VIVEK COLLEGE OF COMMERCE M.Sc.IT- IV, Sample Paper 2019-2020 Subject : Artificial Intelligence											
						Sr.No	Question	Α	В	С	D
						1	Which among the following could the Existential instantiation of ∃x Crown(x) ^ OnHead(x, Johnny)?	<u>Crown(John) ^</u> <u>OnHead(John,</u> Jonny)	Crown(y) ^ OnHead(y, y, x)	Crown(x) ^ OnHead(x, Jonny)	Crown(John) V OnHead(John, Jonny)
2	What among the following could the universal instantiation of For all x King(x) ^ Greedy(x) => Evil(x)	King(John) ^ Greedy(John) => Evil(John)	King(y) ^ Greedy(y) => Evil(y)	King(Richard) ^ Greedy(Richard) => Evil(Richard)	<u>All of the given</u> statements						
3	Which is not Familiar Connectives in First Order Logic?	and	if	or	not						
4	Consider the following statement: "The Existential Quantifier is used at the places where only some part of the subject's population is to be defined under the predicate." By reading the above statement, what are the phrases for which the existential quantifier can be applied?	For all	<u>For some</u>	For every	For each						
5	Which of the mentioned point correctly defines a quantifier in AI?	Quantifiers are numbers ranging from 0-9.	Quantifiers are the quantity defining terms which are used with the predicates.	Quantifiers quantize the term between 0 and 1.	Quantifiers initializes the variables						
6	Using primitives of conceptual dependency models, how does the statement "John is fair" be represented ?	PP → ACT	<u>PP ⇔ PA</u>	PP⇔ PP	$PA \Leftrightarrow PP$						
7	Using primitives of conceptual dependency models, how does the statement " John went r" be represented ?	<u>PP ⇔ ACT</u>	$PP \Leftrightarrow PA$	PP⇔ PP	PA ⇔ PP						
8	Which of the following is not a component of SCRIPT	Props	Roles	Track	Actor						
9	Which of the following reasoning model is based on principle of analogy	Rule based reasoning	Model based reasoning	Case based reasoning	Multimodal reasoning						
10	approach of reasoning integrates different types of knowledge in the same decision support system.	Rule based reasoning	Model based reasoning	Case based reasoning	<u>Multimodal</u> reasoning						